

	Drupal Webdesign
	Hosting
	Kontakt
	Porträt
	Anfahrt
	Impressum
	Datenschutz

Startseite » Sammlung von Newsfeeds » Quellen »

Planet Drupal

[image: Firmenlogo]

 [image: Inhalt abgleichen]
 Drupal.org - aggregated feeds in category Planet Drupal

 URL: https://www.drupal.org/planet

 Aktualisiert: vor 1 Woche 3 Tage

 PreviousNext: Handling Emails Asynchronously: Integrating Symfony Mailer and Messenger

 7. Februar 2024 - 21:54

 Take advantage of Symfony Mailer’s first-class integration with Symfony Messenger brought to Drupal via the SM project, allowing your site to send emails asynchronously.

 by
 daniel.phin
 / 8 February 2024This post is part 6 in a series about Symfony Messenger.
	Introducing Symfony Messenger integrations with Drupal
	Symfony Messenger’ message and message handlers, and comparison with @QueueWorker
	Real-time: Symfony Messenger’ Consume command and prioritised messages
	Automatic message scheduling and replacing hook_cron
	Adding real-time processing to QueueWorker plugins
	Making Symfony Mailer asynchronous: integration with Symfony Messenger
	Displaying notifications when Symfony Messenger messages are processed
	Future of Symfony Messenger in Drupal

Since Swift Mailer and its Drupal contrib integration were recently deprecated, many projects have naturally switched to its replacement: Symfony Mailer, either via Drupal Symfony Mailer or Drupal Symfony Mailer Lite.
This post outlines how you can take advantage of Symfony Mailer’s first class integration with Symfony Messenger brought to Drupal via the SM project. This integration allows for dispatching emails off-thread, potentially improving performance of the dispatching (usually web-) thread by offloading email-related tasks to dedicated Symfony Messenger workers. This setup can be considered an alternative to using Queue Mail.
SetupAs of writing, of the two Symfony Mailer implementations in contrib, Drupal Symfony Mailer Lite has built in support for Symfony Messenger. Drupal Symfony Mailer does not yet support it, an issue and merge request exist to add it. Apply a patch until the changes are merged.
Symfony Messenger itself does not require any special configuration, other than installing SM.
To run asynchronously, the \Symfony\Component\Mailer\Messenger\SendEmailMessage message must have routing configuration to a transport. Or at least the fallback transport must be configured. Without transport configuration, Emails will still be dispatched through Messenger, however they will be executed synchronously in the same thread they were dispatched.
Opting out
If you happen to have both Symfony Mailer and Symfony Messenger installed but do not want emails to be sent asynchronously, you can configure routing for the \Symfony\Component\Mailer\Messenger\SendEmailMessage message to instead use the synchronous transport.
If you’re using the SM Config submodule:
Sending emails and dispatching emailsEmails may be dispatched using the usual Drupal mechanism, or you can dispatch using Symfony Mailer directly by constructing an email object:
$email = (new \Symfony\Component\Mime\Email())
 ->to('jane@example.com')
 ->from('john@example.com')
 ->subject('Hello world!')
 ->text('Some sample text.')
 ->html('<p>some sample text.</p>');
/** @var \Symfony\Component\Mailer\MailerInterface $mailer */
$mailer = \Drupal::service(\Symfony\Component\Mailer\MailerInterface::class);
$mailer->send($email);After the send method is executed, Mailer checks Messenger is available, creates a new SendEmailMessage message to wrap the \Symfony\Component\Mime\Email object. Then dispatches SendEmailMessage to the messenger bus.
As is typical with Symfony Messenger, email messages must be serialisable. Avoid including any Drupal entities or service references in an email object, and render email contents before sending it.
Processing emailsTo process email messages, run the worker with sm messenger:consume. This command will either listen or poll for messages and execute them in a dedicated thread, ensuring quick processing after they are dispatched. For more information on the worker, please refer to post 3 of this series.
In the next post, we’ll explore how to add a user interface to notify users when relevant tasks have been processed.

 Tagged

 Symfony, Symfony Messenger, Symfony Mailer, Email

 mark.ie: Show the last author of a node in the Drupal content list

 7. Februar 2024 - 16:40

 Instead of showing the original author of a node, show the last person to edit it.

 Droptica: The Future After Drupal 7. Join Our Free Droptica Webinar

 7. Februar 2024 - 14:32

 Support for Drupal 7 will end next year. If you're running your website on this version of the system, now is a great time to figure out what to do with it. Is upgrading to Drupal 10 a good idea? And how about choosing other technologies to migrate your site? Join our free webinar on February 22nd to discover your options as Drupal 7's end-of-life becomes a reality.

 LN Webworks: Must-Know Features Of Webform Module For Drupal 10

 7. Februar 2024 - 11:51

 The Webform module works as a form of builder and submission manager within the Drupal framework, offering a wide range of levels of flexibility and ease for site builders. This tool empowers website creators to efficiently develop a range of forms, with the added benefit of default settings for quick implementation. Delving into its impressive features, the Webform module is known for its user-friendly interface. Users can swiftly create forms using default configurations or take advantage of the module's customization options to tailor forms to precise specifications.

Beyond this, the Webform module boasts a suite of powerful features, making it a core asset of the Drupal ecosystem. But there’s more to it. Let’s have an overview of the most important features and functionalities of the Webform.

 Brian Perry: Extending The Drupal API Client

 7. Februar 2024 - 2:00

 import RadCallout from '../../../components/rad/RadCallout.astro';

As a result of our Pitch-burgh funding, the current focus of the Drupal API Client is to create a fully featured client for Drupal's JSON:API implementation. Even with that goal, we've focused on making our work extensible for other API formats in the future through the implementation of an ApiClient base class. Functionality that could apply to any API client is added to the base class, while anything specific to JSON:API is added to the JsonApiClient class (which extends ApiClient.)

Recently, we have been working on adding Decoupled Router support to our JSON:API Client. I found this implementation to be a great example of the extensibility of the library, so I wanted elaborate on it in a blog post for those who may want to extend the API Client in the future.

The existing JsonApiClient has the following method to retrieve data for a resource:

await client.getResource('node--article', '3347c400-302d-4f6c-8fcb-3e74beb002c8');

Ideally, users of Decoupled Router could also get an identical response by resolving a path:

await client.getResource('/articles/give-it-a-go-and-grow-your-own-herbs');

To achieve this, we first needed to provide a way to reliably get data from Decoupled Router.

The Decoupled Router Endpoint
With the module enabled, Decoupled Router exposes an endpoint with the following structure:

/router/translate-path?path=<path>

Given a path like /articles/give-it-a-go-and-grow-your-own-herbs the endpoint could provide a response similar to:

{
 "resolved": "https://dev-drupal-api-client-poc.pantheonsite.io/en/articles/give-it-a-go-and-grow-your-own-herbs",
 "isHomePath": false,
 "entity": {
 "canonical": "https://dev-drupal-api-client-poc.pantheonsite.io/en/articles/give-it-a-go-and-grow-your-own-herbs",
 "type": "node",
 "bundle": "article",
 "id": "11",
 "uuid": "3347c400-302d-4f6c-8fcb-3e74beb002c8"
 },
 "label": "Give it a go and grow your own herbs",
 "jsonapi": {
 "individual": "https://dev-drupal-api-client-poc.pantheonsite.io/en/jsonapi/node/article/3347c400-302d-4f6c-8fcb-3e74beb002c8",
 "resourceName": "node--article",
 "pathPrefix": "jsonapi",
 "basePath": "/jsonapi",
 "entryPoint": "https://dev-drupal-api-client-poc.pantheonsite.io/en/jsonapi"
 },
 "meta": {
 "deprecated": {
 "jsonapi.pathPrefix": "This property has been deprecated and will be removed in the next version of Decoupled Router. Use basePath instead."
 }
 }
}

While easy to make sense of, this response technically doesn't follow the JSON:API spec, which prevents us from using our existing JSON:API Client without modification. We could write a small amount of custom code in JsonApiClient to fetch and handle data from this endpoint, but this case is exactly what our ApiClient base class is intended for. With a similarly small amount of code we can extend the ApiClient class to add only what is unique to the Decoupled Router endpoint, while getting access to all of the features of the base class at the same time.

So rather than writing code specific to JsonApiClient, we decided to create a new DecoupledRouterClient class that our JsonApiClient could then make use of.

Extending ApiClient
For the sake of example, a simple Decoupled Router client could look like this:

// DecoupledRouterClient.ts
import {
 ApiClient,
 type ApiClientOptions,
 type BaseUrl,
} from "@drupal-api-client/api-client";

export class DecoupledRouterClient extends ApiClient {
 constructor(baseUrl: BaseUrl, options?: ApiClientOptions) {
 super(baseUrl, options);
 const { apiPrefix } = options || {};
 this.apiPrefix = apiPrefix || "router/translate-path";
 }

 async translatePath(path: string) {
 const apiUrl = `${this.baseUrl}/${this.apiPrefix}?path=${path}`;
 const response = await this.fetch(apiUrl);

 return response.json();
 }
}

In our constructor, the only modification we need to make is the default value for the API prefix. While the base class doesn't have a default, Decoupled Router uses router/translate-path. Now when instance of DecoupledRouter is created without this option, it will use the default.

We then define a translatePath method that:

	Takes a path of type string
	Uses the fetch method provided by the base class to make a request to Decoupled Router
	Returns a promise with the provided json data

Using an instance of this class would look something like:

// main.ts
import { DecoupledRouterClient } from "./DecoupledRouterClient.ts";

const decoupledRouterClient =
 new DecoupledRouterClient("https://dev-drupal-api-client-poc.pantheonsite.io");

const translatedPath =
 await decoupledRouterClient.translatePath(
 "/articles/give-it-a-go-and-grow-your-own-herbs"
);

<RadCallout>Check out this code sandbox for a live version of the example above.</RadCallout>

Taking Advantage of Additional ApiClient Features
With this example we already have a functional client, but quite a bit more is possible using the features of the ApiClient class we extended. For example, We can already make authenticated requests using any of the supported authentication methods:

// main.ts
import { DecoupledRouterClient } from "./DecoupledRouterClient.ts";

const decoupledRouterClient =
 new DecoupledRouterClient("https://dev-drupal-api-client-poc.pantheonsite.io", {
 authentication: {
 type: "OAuth",
 credentials: {
 clientId: "client-id",
 clientSecret: "client-secret"
 }
 },
 });

// API requests will now be authenticated
const translatedPath =
 await decoupledRouterClient.translatePath(
 "/articles/give-it-a-go-and-grow-your-own-herbs"
);

Our example Decoupled Router client could be updated to take advantage of built in caching, logging, or locale support. For example, the following modification would allow us to make use of the defaultLocale option if our Drupal site supports multiple languages:

// DecoupledRouterClient.ts
import {
 ApiClient,
 type ApiClientOptions,
 type BaseUrl,
} from "@drupal-api-client/api-client";

export class DecoupledRouterClient extends ApiClient {
 constructor(baseUrl: BaseUrl, options?: ApiClientOptions) {
 super(baseUrl, options);
 const { apiPrefix } = options || {};
 this.apiPrefix = apiPrefix || "router/translate-path";
 }

 async translatePath(path: string) {
 // If it exists, incorporate the default locale
 // into the apiUrl
 const apiUrlObject = new URL(
 `${this.defaultLocale ?? ""}/${this.apiPrefix}?path=${path}`,
 this.baseUrl,
);
 const apiUrl = apiUrlObject.toString();
 const response = await this.fetch(apiUrl);

 return response.json();
 }
}

Routing is a common problem, so we've added a fully featured getResourceByPath method to our latest @drupal-api-client/json-api-client release. We've also published the Decoupled Router client as a standalone package for anyone who wants to use it separately.

While the caching functionality of the client can lessen the impact, getResourceByPath still makes multiple API calls for uncached data, which leaves room for improvement. We could optimize this in the future by providing support for the subrequests module. That is yet another client for a type of Drupal API that could use the ApiClient base class as a starting point.

We're closing in on the 1.0 release of @drupal-api-client/json-api-client. If you’re interested in contributing, check out our project page on Drupal.org, and join us in the #api-client channel on Drupal Slack.

 PreviousNext: Adding real-time processing to QueueWorker plugins

 6. Februar 2024 - 21:52

 Projects no longer need to rely on unpredictable processing time frames. The SM project can intercept legacy Drupal @QueueWorker items and insert them into the Symfony Messenger message bus, effectively giving existing core and contrib queue workers jobs real-time processing capabilities.

 by
 daniel.phin
 / 7 February 2024This post is part 5 in a series about Symfony Messenger.
	Introducing Symfony Messenger integrations with Drupal
	Symfony Messenger’ message and message handlers, and comparison with @QueueWorker
	Real-time: Symfony Messenger’ Consume command and prioritised messages
	Automatic message scheduling and replacing hook_cron
	Adding real-time processing to QueueWorker plugins
	Making Symfony Mailer asynchronous: integration with Symfony Messenger
	Displaying notifications when Symfony Messenger messages are processed
	Future of Symfony Messenger in Drupal

QueueWorker plugins@QueueWorker plugin implementations require no modifications, including the method of dispatch, data payload, or the processItem . The data payload must of course be serialisable. Fortunately, most QueueWorker plugins already comply since their data is serialised and stored to the queue table. As always, avoid adding complex objects like Drupal entities to payloads.
RunnersWith queue interception, the sm command can be solely relied upon. Legacy runners such as Drupal web cron, request termination cron (automated_cron.module), and Drush queue:run will be rendered inoperable since they will no longer have anything to process. Consider decommissioning legacy runners when deploying queue interception.
SetupQueue interception is a part of the primary SM module. Adding a single line in settings.php is the only action required to to enabling this feature:
$settings['queue_default'] = \Drupal\sm\QueueInterceptor\SmLegacyQueueFactory::class;
SM module will need to be fully installed before this line is added. Consider wrapping the line in a class_exists(SmLegacyQueueFactory::class) to enable in a single deployment.
Existing per-queue backends
Setup may be more complex if projects are utilising per-queue backends or anything other than the default database backend for queues, such as Redis. In that case, carefully evaluate whether to convert all or specific queues to use Symfony Messenger.
Whether per-queue backends are utilised can be determined by looking for queue_service_ or queue_reliable_service_ prefixed items in settings.php.
Routing@QueueWorker jobs are converted to \Drupal\sm\QueueInterceptor\SmLegacyDrupalQueueItem messages in the backend. Knowing this class name allows you to configure transport routing. If routing for this message is not explicitly configured, it will naturally fall back to the default transport, or execute synchronously if there is no routing configuration.
Running the jobsAs usual, when a transport is configured, all you need to do is run sm messenger:consume to execute the tasks. The worker will either listen or poll for messages, and execute them in a very short amount of time after they are dispatched, in a dedicated thread. More information on the worker can be found in post 3 of this series.
The next post covers how Drupal emails can be dispatched to messages, so the web thread can execute faster.

 Tagged

 Symfony, Symfony Messenger

 Drupal Core News: DrupalCI and all patch testing will be turned off on July 1, 2024

 6. Februar 2024 - 21:16

 To continue automated testing, projects must convert to GitLab CI and contributors must switch from patches to merge requests by July 1, 2024.

As of July 2023, contributed projects are fully equipped to adopt GitLab CI. In October 2023 we announced that Gitlab CI testing of Drupal core was already five times faster than the legacy DrupalCI system. In our December 2023 maintainer email we announced that our legacy DrupalCI will be retired as soon as July 2024. Now we are announcing further details.

What's happening?

Some DrupalCI features are already turned off
Projects without DrupalCI testing configured cannot add it anymore. Direct access to log output and artifacts on DrupalCI is no longer available. Results are still summarized on the Automated Testing tab of those project's pages.

With the exception of Drupal 7, it is not possible to run tests on patches against Drupal core anymore. Even for Drupal 7, patches need to be sent for testing manually.

Changing DrupalCI schedules ends on April 30, 2024
After April 30, 2024, DrupalCI schedules can not be added or changed, except to remove DrupalCI testing. Tests will keep running with existing configured schedules until removed.

DrupalCI and all patch testing will be turned off on July 1, 2024
No DrupalCI tests will be executed after this date. It will also no longer be possible to run tests on any patches on Drupal.org on any project. Existing test results will be kept for six months.

All results from DrupalCI tests will be removed on January 1, 2025
This is the end of DrupalCI data retention. No testing results will be available beyond January 1, 2025.

What to do about it?
Most projects can start GitLab CI testing with a provided template .gitlab-ci.yml
Using GitLab CI for testing may seem intimidating at first but the Drupal Association engineering team and a number of community volunteers have spent a lot of time to make it as easy as possible for you to adopt GitLab CI for testing.

There is a preconfigured .gitlab-ci.yml template that will set up everything you need to test your project. This template has several useful features, including a variables file that will be automatically updated by the Drupal Association, to make sure you’re always testing against the currently supported versions of Drupal.

Most project maintainers won’t have to make any changes to the template, just commit the template to your project and your testing should work right away!

Set up GitLab CI for your drupal.org project today.

Contributors must use merge requests on all projects to get automated testing after July 1, 2024
GitLab CI, like almost all modern CI systems, is designed to test merge requests. If you have ever contributed to a project on GitHub, you pretty much already know how it works. The advantage of Drupal.org merge requests is that they are collaborative by default, so you and fellow contributors can work in the same fork.

Read the best practices for contributing through merge requests.

 ImageX: Drupal Calendar Creation Unleashed: Useful Modules And A Step-by-Step Walkthrough

 6. Februar 2024 - 19:31

 Authored by: Nadiia Nykolaichuk.

One of the earliest known calendars was created by ancient Egyptians, who used hieroglyphics and carvings to represent the months, days, and important events. Today, visually appealing and user-friendly calendars are easily created on websites, all thanks to powerful CMSs like Drupal. We’ll share some modules in Drupal that are available for calendar creation and management, and carefully walk you through the key steps of building a calendar.

 DrupalEasy: Why you should care about using settings.local.php

 6. Februar 2024 - 17:14

 Teaching folks why a settings.local.php file is an important part of setting up a personal development environment is so important to us here at DrupalEasy that it is a foundational part of both of our long-form Drupal training courses.
While preparing for an upcoming podcast mini-series I've been invited to participate in with the Talking Drupal folks, I'll be mentoring someone who is looking to re-enter the Drupal development scene after missing out on Drupal's transition from its pre-Symfony days. One of the tasks I have outlined for this person is to set up a settings.local.php file. When I went to find a good resource for the "why" and the "how", I came up empty. I couldn't find a single, up-to-date resource that conveyed what I feel is important.
So, that's what this blog post is all about.
Why use settings.local.php?Using a settings.local.php is all about configuring your local development environment for a project to be as useful to you, the developer, as possible. Default settings in this file do things like force all errors to the screen and disabling some of the (but not all) Drupal caches.
This file also pulls in the sites/development.services.yml file which contains some useful service class parameters and overrides - again, things that are useful for local development.
Setting up a settings.local.php literally takes less than two minutes, and when I see a Drupal developer struggling to figure out a white-screen-of-death error on their local environment, I can't help but ????
In addition to adding Drupal's core-dev dependencies and the Devel module, enabling the settings.local.php file is literally one of the first things I do when setting up a new site.
How do I enable the settings.local.php?I'm so glad you asked.
Step 1Copy sites/example.settings.local.php to sites/default/settings.local.php. Use a user interface (like the MacOS Finder) or the command line - it doesn't matter.
cp web/sites/example.settings.local.php web/sites/default/settings.local.phpStep 2Uncomment the conditional include for settings.local.php in your sites/default/settings.php file - it looks like this:
if (file_exists($app_root . '/' . $site_path . '/settings.local.php')) {
include $app_root . '/' . $site_path . '/settings.local.php';
}Uncommented, it looks like this:
if (file_exists($app_root . '/' . $site_path . '/settings.local.php')) {
 include $app_root . '/' . $site_path . '/settings.local.php';
}Step 3There is no step 3. This blog post is complete.

 Tag1 Consulting: Gander Automated Performance Testing - Video Demo with Catch

 6. Februar 2024 - 15:41

 In this second part (check the first part!) of our Tag1 Team Talk on Gander, the new Automated Performance Testing Framework integrated into Drupal Core, we get a live demo from Nat Catchpole (aka. Catch), the lead developer on the project. Nat takes us on a tour through this high-impact tool developed by Tag1 in collaboration with the Google Chrome Team, showing you how you can get up and running with automated performance testing for your projects. Gander is poised to significantly impact Drupal's user experience, performance and Core Web Vitals by creating visibility into how Drupal performs on the front and back end. Catch shares his expert insights into the development and application of Gander and shows how easy it is for developers to start extending and using this today on their projects! Whether you're a Drupal developer looking to improve your project's performance or simply curious about the latest in Drupal technology, this episode offers valuable knowledge and practical advice on getting your Drupal website to perform optimally. With discussions on Gander's immediate benefits and future potential in the Drupal community, this episode is a must-watch for anyone interested in taking their projects to the next level...

 Read more

Mariano

Tue, 02/06/2024 - 05:41

 Specbee: Style Made Simple with Acquia Site Studio’s Style Guide Manager

 6. Februar 2024 - 9:41

 Ever wished you could tweak your web page’s header font or switch up your CTA color, but skipped it to save your developer from the hassle? With Acquia Site Studio’s Style Guide Manager, you don’t have to! Non-technical content marketers now have the power to make styling tweaks to their Drupal site theme via an intuitive interface. Are you interested in learning more? Come on in!

	
			

What is Site Studio Style Guide Manager
Previously Acquia Cohesion, Site Studio is a composable, low-code digital experience tool by Acquia that enables users to build and assemble pages with less to no code. Check out our previously written article about how to build component-based websites on Drupal using Site Studio.
Style Guide Manager is an optional module that you can enable within Site Studio. It centralizes the design elements like colors, typography, and components in one place, making it easier to maintain a cohesive look and feel throughout your site.
It provides a set of style guides that are theme-specific. You can create style guide(s) to manage Site Studio styles within your Drupal theme settings. You can even override your theme styles using the Style guides.
Advantages:
Change the appearance of your Drupal website based on the active theme.
Apply global styles and change the appearance with a simple-to-use interface.
Create design systems for multi-brand and multi-sites.
Style guide manager has two interfaces:
Style guide builder
Style guide
Style Guide Builder
The Style Guide Builder is a tool within Acquia Site Studio that allows you to actively create and manage the Style Guide. It streamlines the process of updating and maintaining the design standards. Changes made here are automatically applied throughout the site.

Style guide
The output of a Style Guide Builder - a set of design guidelines, is the Style Guide. The Style Guide is a collection of design rules, standards, and components that define the visual appearance of your website.

	
			

Creating a Style Guide
First, make sure you have installed Acquia Site Studio.
Navigate to /admin/cohesion/style_guides
Click on Add Style guide
Add the Title
Click the + button below the Style Guide form to add the form fields.

Add the fields such as Font picker, Color picker, etc. with the combination of form layout fields such as Group accordion, and Tabs as per your requirement.
Give a meaningful name for the Field Label so it will generate a meaningful token.
This is how your Style Guide creation page will look like:

You can also see the preview below of your Style Guide form builder and how it looks on the theme settings.

	
			

Click on Save and Continue
Managing your Styles
Now that you have successfully created a Style Guide, let's see where and how you can manage your styles.
Navigate to your theme appearance settings (here mine is: /admin/appearance/settings/techx)
Add your values such as fonts, colors, etc., and save the configuration.
This is how your style guide will look like after successfully saving the configuration.

	
			

Now, you need to use the Style Guide tokens in the styles to see your styles on the front end as per the Style Guide values. Tokens are predefined variables or placeholders representing design elements such as colors, typography, spacing, and other visual properties. This is not just restricted to styles, you can use these tokens throughout your Site Studio like templates, or components as per your requirements.
For example:

Make sure you enable the token variable mode and then add your tokens.
Implementing the Style Guide
With Site Studio’s Style Guide Manager, you can create multiple style guides as per your requirements.

	
			

You can see all of them in your theme settings as shown below

	
			

This is what my front end looks like. You can change the values in the Style Guide per your requirements and verify the page/site accordingly.

	
			

Final Thoughts
Site Guide Manager is a very useful tool for non-technical users like content editors and marketers to see all the styles in one place with an easy-to-use user interface and modify them according to their choice. All of this without depending on a developer. Are you looking to build highly engaging, omnichannel, and result-driven solutions with Acquia and Drupal? We are Acquia partners and we know what it takes to get you there. Talk to us today to find out more.

 Web Wash: Getting Started with Webform in Drupal (2024)

 6. Februar 2024 - 3:00

 Webform is a Drupal module that allows you to create forms directly in Drupal without using a 3rd party service.

It can be used to create basic “Contact Us” and complex application forms with custom field logic and integration.

In this getting started guide you’ll learn how to:

	Create a form
	Add elements to form
	Customize form with conditional logic
	Embed the form
	Send submissions to Google Sheets

This tutorial accompanies the video above.

 Factorial.io: A weekend dedicated to Drupal CMS

 6. Februar 2024 - 2:00

 For years, the last weekend in January has been a special one for the worldwide community behind the CMS system Drupal: The Global Contribution Weekend. Factorial has been a major contributor to the Drupal community for many years, so we hosted our own hybrid Global Contribution Weekend event.

 DrupalEasy: DrupalEasy Podcast S16E4 - Kevin Quillen - Drupal 10 Development Cookbook

 5. Februar 2024 - 22:29

 We talk with Kevin Quillen, author of Drupal 10 Development Cookbook, published in February, 2023 by Packt Publishing.
URLs mentioned	Drupal 10 Development Cookbook
	Open AI / ChatGPT integration module
	Velir
	Kevin's blog
	Drupal Test Traits
	Drush's generate command

DrupalEasy NewsProfessional module development - 15 weeks, 90 hours, live, online course.
Drupal Career Online - 12 weeks, 77 hours, live online, beginner-focused course.
Audio transcript
We're using the machine-driven Amazon Transcribe service to provide an audio transcript of this episode.
SubscribeSubscribe to our podcast on iTunes, Google Play, iHeart, Amazon, YouTube, or Spotify.
If you'd like to leave us a voicemail, call 321-396-2340. Please keep in mind that we might play your voicemail during one of our future podcasts. Feel free to call in with suggestions, rants, questions, or corrections. If you'd rather just send us an email, please use our contact page.
CreditsPodcast edited by Amelia Anello.

 DrupalEasy: Debugging all the things with Xdebug, DDEV, PhpStorm, PhpUnit

 5. Februar 2024 - 22:29

 Over the past few years, we've published a couple of blog posts about setting up Xdebug for Drupal module development. But, like all things in tech, there's always more to learn as tools and technology evolve.
The setupI was recently working with one of our Professional (Drupal) Module Development students trying to determine why she wasn't able to use Xdebug to debug a PhpUnit-based functional test. To be clear, the breakpoint wasn't set in the actual test class, the breakpoint was set in some custom module code that was called by the test class.
In functional tests, Guzzle is used by PhpUnit to make calls like:
$this->drupalGet('')So, in a way, there isn't a direct PHP connection between test class and the code under test. It is in this circumstance that the breakpoint wasn't working.
Xdebug was working fine for this student to debug other aspects of the same project - it just wasn't hitting breakpoints during functional tests.
The solutionThis was one of those instances that I had seen (and solved) previously, but to be honest, PhpStorm/Xdebug solutions have often involved numerous trips into the (extensive) PhpStorm settings area. By the time the problem is fixed, I was never 100% sure exactly which change I made had actually solved the problem. But, this time, I was more careful…
Obviously, Xdebug must be enabled in DDEV, and PhpStorm's almost-magical auto-configuration for Xdebug needs to have configured a new "Server" with proper path mappings (especially for the project root).
The PhpStorm configuration settings related to Xdebug that I now recommend are:
	Set the "Max connections" value to 20 in the "PHP | Debug" configuration area (see image above).
	Uncheck the “Force break at the first line when no path mapping is specified,” "Force break at first line when a script is outside the project" and "Ignore external connections through unregistered server configurations" checkboxes in the "PHP | Debug" configuration area (see image above.)
	Set "Host" and "Name" in the "PHP | Servers" configuration are the same (and of the form name.ddev.site, where name is your site's DDEV machine name) (see image below.)
	When running functional tests, PhpStorm may request to see up a new server connection in "PHP | Servers" with the name "localhost." Allow it and ensure the path mapping is correct.

With these settings, functional PhpUnit tests can be effectively debugged.

 PreviousNext: Automatic message scheduling and replacing hook_cron

 5. Februar 2024 - 21:43

 Symfony Scheduler provides a viable replacement to hook_cron wherein messages can be scheduled for dispatch at a predefined interval. Messages are dispatched the moment they are scheduled, and there is no message duplication, making tasks more reliable and efficient.

 by
 daniel.phin
 / 6 February 2024This post is part 4 in a series about Symfony Messenger.
	Introducing Symfony Messenger integrations with Drupal
	Symfony Messenger’ message and message handlers, and comparison with @QueueWorker
	Real-time: Symfony Messenger’ Consume command and prioritised messages
	Automatic message scheduling and replacing hook_cron
	Adding real-time processing to QueueWorker plugins
	Making Symfony Mailer asynchronous: integration with Symfony Messenger
	Displaying notifications when Symfony Messenger messages are processed
	Future of Symfony Messenger in Drupal

With this, the sm worker provided by the SM project, the Symfony Messenger integration with Drupal, can be solely relied on. Rather than legacy runners such as Drupal web cron, request termination cron (automated_cron.module), Drush cron, and Ultimate Cron.
Scheduler functionality is implemented by the Symfony Scheduler component. The Drupal integration is provided by the SM Scheduler module
Schedule providerCreate a message and message handler as usual, then create a Schedule Provider:
<?php

declare(strict_types = 1);

namespace Drupal\my_module\Messenger;

use Symfony\Component\Scheduler\Attribute\AsSchedule;
use Symfony\Component\Scheduler\RecurringMessage;
use Symfony\Component\Scheduler\Schedule;
use Symfony\Component\Scheduler\ScheduleProviderInterface;

#[AsSchedule('my_scheduler_name')]
final class MyScheduleProvider implements ScheduleProviderInterface {

 /**
 * {@inheritdoc}
 */
 public function getSchedule(): Schedule {
 return (new Schedule())->add(
 RecurringMessage::every('5 minutes', new MyMessage()),
);
 }

}A schedule provider is:
	a class at the Messenger\ namespace
	with a #[AsScheduler] class attribute
	implementing \Symfony\Component\Scheduler\ScheduleProviderInterface
	implements an getSchedule method. This method returns a message instance and the schedule frequency.

For dependency injection, schedule providers have autowiring enabled.
What would normally be the contents of a hook_cron hook would instead be added to the message handler. The message itself does not need to store any meaningful data.
Instead of intervals via RecurringMessage::every(...), crontab syntax can be used:
\Symfony\Component\Scheduler\RecurringMessage::cron('*/5 * * * *', new MyMessage());Running the workerLastly, schedulers must be run via the consume command with a dedicated transport. The transport name is the schedule ID prefixed by scheduler_. For example, given the scheduler ID my_scheduler_name from above, the transport name will be scheduler_my_scheduler_name.
The command finally becomes: sm messenger:consume scheduler_my_scheduler_name .
TimingMessages will be dispatched the moment their interval arrives. Normally intervals begin when the worker is initiated, however you can set a point in time to begin interval computation using the \Symfony\Component\Scheduler\RecurringMessage::every $from parameter.
The worker must be running at the time when a message is scheduled to be sent. The transport won't retroactively catch-up with messages not dispatched during the time it wasn't running.
The next post outlines how to intercept legacy Drupal @QueueWorker items and insert them into the message bus.

 Tagged

 Symfony, Symfony Messenger, Symfony Scheduler, Cron

 Talking Drupal: Talking Drupal #436 - Drupal & AI

 5. Februar 2024 - 21:00

 Today we are talking about AI within Drupal, How AI can help, and Modules to use with guest Martin Anderson-Clutz. We’ll also cover Augmentor AI as our module of the week.
 For show notes visit: www.talkingDrupal.com/436
 Topics 	Terminology
	IMF analysis
	Prompt engineering
	AI in Drupal
	Best way to try modules
	Best use of AI
	Other ways of integrating

 Resources 	Augmentor AI
	Open AI
	Prompt Engineering: Get the Most From Your Drupal Site's AI Integration
	Terminology 	NLP - work with text provided in a conversational format, understand the intended meaning, and provide a relevant response
	AI - A subset of CS that aims to develop systems that can mimic human response, or automating sophisticated behavior
	ML - subset of AI that aims to act without explicit guidance, by extrapolating from known data
	Deep learning - a subset of ML which uses artificial neural networks with representational learning to develop and leverage their own means of classification and other feature detection
	LLM - an AI algorithm that uses Deep Learning techniques to accomplish NLP tasks such as responding to unstructured user prompts. LLMs are trained on massive data sets, often gathered from the internet, but sometimes using more specialized data
	Typically the AI interfaces our listeners are already using are based on an LLM, but the nature and recency of the data they’ve been trained on can vary widely. Recently Mike Miles created Drupal Droid, a GPT model specifically trained for Drupal developers, and you can find a demo of that in our YouTube channel

	Mike Miles Drupal Droid
	AI module list
	OpenAI Image
	Search API Pinecone
	TMGMT Translator OpenAI

 Guests Martin Anderson-Clutz - mandclu
 Hosts Nic Laflin - nLighteneddevelopment.com nicxvan John Picozzi - epam.com johnpicozzi
 MOTW Correspondent Martin Anderson-Clutz - mandclu Augmentor AI
 	Brief description: 	Have you ever wanted a highly configurable way to integrate multiple AI services with your Drupal site? There’s a module for that.

	Brief history 	How old: created in Oct 2022 by murrayw of Morpht, though recent releases are by elonel
	Versions available: 1.1.2 which works with Drupal 9.5 and 10

	Maintainership 	Actively maintained, most recent release was earlier this month
	Documentation available
	Number of open issues: 11, 3 of which are bugs

	Usage stats: 	82 sites

	Module features and usage 	To use Augmentor AI, you need to define one or more “augmentor” configuration entities. An augmenter entity implements an augmentor type, which determines what AI service it can use, what configuration options it will have available, and so on.
	The augmentor will define one or more “messages” that provide structure to the prompt that will be passed to the AI model in order to generate a response. It can also be configured in a variety of ways, such as how much randomness to use, a maximum response length, and more.
	You can expose your augmentor(s) to content creators by adding a CKEditor button, or by adding fields to your site’s entity forms. For each field use can choose the widget to use, and how it should interact with any existing data in the field you want to target.
	For example, you could have it generate a summary from your body field and have it automatically populate the summary field. Or, you can have it suggest tags, but the specialized widget renders each suggestion as a clickable element that will add the tag to a core tag field.
	There are currently modules available to integrate Augmentor AI with ChatGPT, Google Cloud Vision, AWS AI, and more.

 The Drop Times: Beyond Code: A Decadal Odyssey with Drupal

 5. Februar 2024 - 19:19

 Explore the dynamic journey of Jorge Lopez-Lago, seasoned Solutions Architect at FFW, as he shares his diverse experiences and insights in an exclusive interview with The Drop Times, offering a glimpse into his evolution from a hands-on Drupal developer to a multifaceted leader and his unique approach to problem-solving and community engagement.

 Drupal Association blog: Drupal Association Co-Founds the Open Website Alliance

 5. Februar 2024 - 16:29

 The international community organizations behind Drupal, Joomla, TYPO3, and WordPress join forces in a leadership-level alliance. The members of the Alliance are united in their shared values and their message to decision-makers to always choose open source software over proprietary systems.

The Alliance represents the content management systems (CMS) behind roughly 50% of all websites online today. The Open Website Alliance was founded to promote the choice of open-source software and facilitate collaboration between free and open-source web content management projects, furthering openness, trust, and quality. Other free and open-source CMS organizations are encouraged to apply for membership.

Open source is not just the future of software, it is the present,” said Tim Doyle, CEO of the Drupal Association. “At a time when some market forces are pushing solutions that require users to sacrifice ownership of their data, we know that open source offers a better way. Through this alliance, we can help promote, educate, and inspire end-users to take back control of their software, their data, and their own words. Together we can build a better web.

Collaboration on Leadership Level
The Alliance comes about as the result of the collaboration between the Drupal Association, Open Source Matters (Joomla), the TYPO3 Association, and the WordPress Project around an open letter to the European Union.

The Alliance uniquely connects its members on a leadership level. This means the organizations can more easily coordinate strategy and actions, fostering new cross-community collaboration projects and strengthening those that already exist.

The organization’s leadership is also based on collaboration. The presidency rotates among the members, and all decisions are consensus-based.

A Common Stance for Open-Source Software
According to the Alliance’s purpose statement, the “members commit to jointly encourage prospective website owners and developers to always choose open source software over proprietary systems, and to educate why this decision is the first and most important one in a website project. Through this advocacy, we are expanding opportunities for all open source CMS projects.”

The purpose statement describes the Alliance as a “community of communities, built on and furthering openness, trust, and quality.” The collaboration organization also seeks to “benefit the public perception of open source projects, the reliability of open source software, [and] the quality and safety of open source communities,” by being “a platform where members can share and discuss best practices.”

Accounting for the distributed and collaborative nature of open-source software — also beyond content management — the Alliance also includes support of upstream dependencies: “Whenever possible, the Alliance should support third party open source projects and communities upon which our projects depend.”

Shared Values on Open Web
In addition to a promise of joint collaboration, the Open Website Alliance members adhere to the Open Web Manifesto. Originally pioneered by the Drupal Association, the manifesto is a commitment to the web as an empowering tool, built on freedom and decentralization: “Everyone in the world, regardless of background, identity, ability, wealth, or status, has a home on the open web as a user, creator, architect, and innovator. It requires participation: The open web is a shared resource and a shared responsibility, sustained by deliberate choice and collaborative effort.”

Harnessing the concept of shared responsibility, the manifest describes the open web as a protector of privacy and freedom of speech. It should also “enable the next generation of innovators and entrepreneurs” and “must be resilient to a changing world and not controlled by a select few.”

Drupal Association a Proud Co-Founder
The manifesto ends with a grand perspective on the role of the open web and open-source software that could also be a credo for the Alliance’s member projects: “Together, we’re shaping the foundation for how the digital world operates, and how future generations will live, work, connect, and express themselves. As long as our software exists, that foundation will be an open web that is open source, open access, and always open to improvement.”

The Drupal Association is proud to be a founding member of the Open Website Alliance and extends a special thank you to Matthias at Typo3 for his leadership in its formation. This work firmly aligns with the Drupal Association’s vision for a web that is innovative, inclusive, and open.

 Golems GABB: Improving Page Loading Speed in Drupal with Different Caching Solutions

 5. Februar 2024 - 12:12

 Improving Page Loading Speed in Drupal with Different Caching Solutions

 Editor
Mon, 02/05/2024 - 12:12

 Fun fact. Drupal was started in 2001 — two years before WordPress was released. According to W3Techs, this CMS powers 1.1% of all websites, from blogs to e-commerce and government sites, holding a 1.6% market share.

Building a website with Drupal is a good idea. But remember: a poorly optimized Drupal site is vulnerable, has lower response times, and results in database delays. When talking about its performance optimization, the tricks include different architectural changes, modes of caching, and other ways to speed up website load time.

 	« erste Seite
	‹ vorherige Seite
	1
	2
	3
	4
	5
	6
	nächste Seite ›
	letzte Seite »

PC Service Boris Böhne · Lange Straße 23 · D-71063 Sindelfingen · Telefon 0 70 31 / 87 37 39 · Telefax 0 70 31 / 87 32 05 · Mail info@boehne.com · Powered by Drupal.

